
Process Statement

 A process statement contains sequential

statements that describe the functionality

of a portion of an entity in sequential

terms. The syntax of a process statement

is

 [process-label:] process [(sensitivity-

list)]

begin

◦ sequential-statements; these are ->

 variable-assignment-statement

 signal-assignment-statement

Process Statement Cont..

wait-statement

if-statement

case-statement

loop-statement

null-statement

 exit-statement

 next-statement

 assertion-statement

 procedure-call-statement

 return-statement.

 end process [process-label];

Variable Assignment

Statement
 Variables can be declared and used

inside a process statement. A variable

is assigned a value using the variable

assignment statement that typically

has the form

 variable-object := expression;

Variable Assignment Statement

cont..
 Consider the following process

statement.

process (A)

variable EVENTS_ON_A: INTEGER := 0;

begin

EVENTS_ON_A := EVENTS_ON_A+1;

end process;

Signal Assignment Statement

 Signals are assigned values using a
signal assignment statement The
simplest form of a signal assignment
statement is

 signal-object <= expression [after
delay-value];

 A signal assignment statement can
appear within a process or outside of
a process. If it occurs outside of a
process, it is considered to be a
concurrent signal assignment
statement.

Signal Assignment Statement

cont..
 When a signal assignment statement

appears within a process, it is

considered to be a sequential signal

assignment statement . When a signal

assignment statement is executed, the

value of the expression is computed

and this value is scheduled to be

assigned to the signal after the

specified delay.

Signal Assignment Statement

cont..
 If no after clause is specified, the

delay is assumed to be a default delta

delay.

 Some examples of signal assignment

statements are

 COUNTER <= COUNTER+ "0010"; -

Assign after a delta delay.

 PAR <= PAR xor DIN after 12 ns;

 Z <= (AO and A1) or (BO and B1) or

(CO and C1) after 6 ns;

Wait Statement

 The wait statement provides an

alternate way to suspend the

execution of a process. There are

three basic forms of the wait

statement.

 wait on sensitivity-list;

 wait until boolean-expression ;

 wait for time-expression ;

Wait Statement cont..

 They may also be combined in a single wait
statement. For example,

 wait on sensitivity-list until boolean-
expression for time-expression-,

 Some examples of wait statements are

 wait on A, B, C; -- statement 1

 wait until (A = B); -- statement 2

 wait for 10ns; -- statement 3

 wait on CLOCK for 20ns; -- statement 4

 wait until (SUM > 100) for 50 ms;

 -- statement 5

If Statement

 An if statement selects a sequence of
statements for execution based on the value
of a condition. The condition can be any
expression that evaluates to a boolean value.
The general form of an if statement is

if boolean-expression then sequential-
statements

[elsif boolean-expression then
sequential-statements]

[else sequential-statements]

end if;

Case Statement

 The format of a case statement is

 case expression is

◦ when choices => sequential-

statements

◦ when choices => sequential-

statements [when others =>

sequential-statements]

 end case;

Null Statement

The statement

null;

 is a sequential statement that does not
cause any action to take place and
execution continues with the next
statement. One example of this
statement's use is in an if statement or in
a case statement where for certain
conditions, it may be useful or necessary
to explicitly specify that no action needs
to be performed.

Loop Statement

 A loop statement is used to iterate

through a set of sequential

statements. The syntax of a loop

statement is

 [loop-label :] iteration-scheme loop

◦ sequential-statements

 end loop [loop-label] ;

Loop Statement cont..

 There are three types of iteration
schemes. The first is the for iteration
scheme that has the form

for identifier in range

An example of this iteration scheme is

FACTORIAL := 1;

for NUMBER in 2 to N loop
FACTORIAL := FACTORIAL * NUMBER;

end loop;

Loop Statement cont..

 The second form of the iteration scheme
is the while scheme that has the form

while boolean-expression

An example of the while iteration scheme
is

J:=0;SUM:=10;

WH-LOOP: while J < 20 loop - This loop
has a label, WH_LOOP.
SUM := SUM * 2;

J:=J+3;

end loop;

Loop Statement cont..

 The third and final form of the iteration
scheme is one where no iteration
scheme is specified.

 In this form of loop statement, all
statements in the loop body are
repeatedly executed until some other
action causes it to exit the loop.

 These actions can be caused by an
exit statement, a next statement, or a
return statement.

Loop Statement cont..

 Here is an example.

SUM:=1;J:=0;

L2: loop

J:=J+21;

SUM := SUM* 10;

exit when SUM > 100;

end loop L2;

Exit Statement

 The exit statement is a sequential

statement that can be used only inside

a loop. It causes execution to jump out

of the innermost loop or the loop

whose label is specified. The syntax

for an exit statement is

 exit [loop-label] [when condition]:

 If no loop label is specified, the

innermost loop is exited.

Next Statement

 The next statement is also a sequential
statement that can be used only inside a
loop. The syntax is the same as that for the
exit statement except that the keyword next
replaces the keyword exit. Its syntax is

 next [loop-label] [when condition];

 The next statement results in skipping the
remaining statements in the current
iteration of the specified loop and
execution resumes with the first
statement in the next iteration of this loop.
If no loop label is specified, the innermost
loop is assumed.

Next Statement cont..

 In contrast to the exit statement that

causes the loop to be terminated (i.e.,

exits the specified loop), the next

statement causes the current loop

iteration of the specified loop to be

prematurely terminated and execution

resumes with the next iteration.

Next Statement cont..

Here is an example.

for J in 10 downto 5 loop
if (SUM < TOTAL_SUM) then

SUM := SUM +2;

elsif (SUM = TOTAL_SUM) then
next;

else
null;

end if;
K:=K+1;

end loop;

